ستاذ: بوزبان زكرباء	الأس
---------------------	------

للوثيقة 0	النموذجي	لتصحيح
-----------	----------	--------

اء	ریان زکریا	ي الأستاذ: بق	- رياضي	ة – تقني رياضي	سُعب: علوم تجريبيا	نة 0 الش	م النموذجي للوثية	لتصحيح		
للمة	الع				T 4		_			
مجموعة	مجزأة		عناصر الإجابة							
							تمرين الأول:	11		
				. Cu ²⁺	اء كل شوارد النحاس	: راجع إلى اختف	سير زوال اللون	1. تف		
			2. كتابة المعادلة الإجمالية للتفاعل الكيميائي:							
					$+2e^{-}=Cu$					
					$2n^{2+} + 2e^{-}$	2.				
			Z_{l}	$n(s) + Cu^{2+}(a$	uq) = Cu(s) + Zu	$n^{2+}(aq)$				
					في التفاعل:	الابتدائي الداخل	ساب كتلة الزنك ا	3. د		
				$V_{Zn} = l \times l \times e$	$=3\times3\times0,2=1$	الزنك: ₈ cm ³ ,	اب حجم صفیحة	*حسا		
		$ \rho_{Zn} = \frac{m_{Zn}}{V_{Zn}} \rightarrow m_{Zn} = \frac{\rho_{Zn} \times V_{Zn}}{\rho_{Zn} \times V_{Zn}} = 7,2 \times 1,8 \approx 13 g $ حساب كتلة الزنك المستعملة: **						<u>* </u>		
				نمي x _{max} :	ج قيمة التقدم الأع <mark>ف</mark>	التفاعل واستنتاج	شاء جدو <mark>ل تقدم</mark>	4. إن		
		ادلة	المع	Cu ²⁺ -	+ Zn =	Cu	$+$ Zn^{2+}			
		الحالة	التقدم	n(Cu ²⁺)	n(Zn)	n(Cu)	n(Zn ²⁺)	-		
		ابتدائية	0	$n_1 = C_0.V$	$n_2 = \frac{m_{Zn}}{M(Zn)}$	0	0			
		انتقائية	X	$n_1 - x$	$n_2 - x$	x	x			
		نهائية	x_{max}	$n_1 - x_{\text{max}}$	$n_2 - x_{\text{max}}$	x_{max}	x_{max}			
		بما أن صفيحة الزنك اختفت كليا، إذن: $n_f\left(Zn\right) = \frac{m_{Zn}}{M\left(Zn\right)} - x_{\max} = 0 \rightarrow x_{\max} = \frac{m_{Zn}}{M\left(Zn\right)} = \frac{13}{65,4} \approx 0,2 mol$								
		 5. حساب كتلة النحاس المترسب: من جدول تقدم التفاعل، وعند نهاية التفاعل، لدينا: 								
		$n_f(Cu) = \frac{m_{Cu}}{M(Cu)} = x_{\text{max}} \to m_{Cu} = x_{\text{max}} \times M(Cu) = 0,2 \times 63,5 \approx 12,96 g$								
		6. حساب أقل حجم من المحلول المستعمل:								
		من أجل الحصول على مزيج ستوكيومتري، لدينا من جدول تقدم التفاعل:								

الشعب: ع ت – تر – ريا

الأستاذ: بوزيان زكرياء

تابع التصحيح النموذجي للوثيقة 0

التمرين الثاني:

1. المعادلات النصفية للأكسدة والإرجاع:

$$Al = Al^{3+} + 3e^{-}(Oxydation)$$
$$2H_3O^{+} + 2e^{-} = H_2 + 2H_2O(R\acute{e}ducation)$$

$x_{ m max}$. إنشاء جدول قدم التفاعل، تحديد التقدم الأعظمى $x_{ m max}$ والمتفاعل المحد $x_{ m max}$

* جدول تقدم التفاعل:

عادلة	الم	2 Al +	6 H ₃ O ⁺ =	$= 2 \text{ Al}^{3+}$	+ 3 H ₂ +	6 H ₂ O
الحالة	التقدم	n(Al)	$n(H_3O^+)$	$n(Al^{3+})$	$n(H_2)$	n(H ₂ O)
ابتدائية	0	$n_1 = \frac{m}{M}$	$n_2 = C.V$	0	0	
انتقالية	x	$n_1 - 2x$	$n_2 - 6x$	2 <i>x</i>	3 <i>x</i>	بوفرة
نهائية	x_{max}	$n_1 - 2x_{\text{max}}$	$n_2 - 6x_{\text{max}}$ WGUG	$2x_{\text{max}}$	$3x_{\text{max}}$	

* التقدم الأعظمي x_{max} والمتفاعل المحد:

نفرض أن H_3O^+ هو المتفاعل المحد.	نفرض أن Al هو المتفاعل المحد.
$x_{\text{max }2} = \frac{C.V}{6} = 1,8 \times 10^{-3} mol$	$x_{\text{max 1}} = \frac{\frac{m}{M}}{2} = 15 \times 10^{-3} mol$

 $x_{
m max} = 1.8 imes 10^{-3} \ mol$ بما أن $x_{
m max \ 2} < x_{
m max \ 1}$ هو المتفاعل المحد و

3. إثبات العلاقات:

$$: \left[H_3 O^+\right]_t = C - rac{2.V_{H_2}}{V.V_M}$$
 العلاقة *

 $n_t \left(H_3 O^+ \right) = C.V - 6.x$ من جدول تقدم التفاعل لدينا:

$$\left[H_3O^+\right]_t=C-rac{6.x}{V}\cdots$$
بقسمة طرفي العبارة السابقة على $\left(V
ight)$ ، نجد

$$n_t(H_2) = 3.x = \frac{V_{H_2}}{V_M} \to x = \frac{V_{H_2}}{3.V_M} \cdots (2)$$
 أيضا من جدول تقدم النفاعل لدينا:

$$\left[H_{3}O^{+}\right]_{t}=C-rac{2.V_{H_{2}}}{V.V_{M}}$$
 :بتعويض العبارة (2) في (1)، نجد

$$: \left[Al^{3+}\right]_t = \frac{2.V_{H_2}}{3.V.V_M}$$
 العلاقة *

 $n_t(Al^{+3}) = 2.x$:من جدول تقدم التفاعل لدينا

$$\left[Al^{3+}
ight]_t = rac{2.x}{V} \cdots$$
 بقسمة طرفي العبارة السابقة على (V) نجد: (V) نجد: $n_t\left(H_2
ight) = 3.x = rac{V_{H_2}}{V_M}
ightarrow x = rac{V_{H_2}}{3.V_M} \cdots$ (2) أيضا من جدول تقدم التفاعل لدينا: $\left[Al^{3+}
ight]_t = rac{2.V_{H_2}}{3.V.V_M}$ بتعويض العبارة (2) في (1)، نجد: $m_t\left(Al\right) = m - rac{2.M\left(Al\right).V_{H_2}}{3.V_M}$ * العلاقة $m_t\left(Al\right) = m - rac{2.M\left(Al\right).V_{H_2}}{3.V_M}$

 $n_t(Al) = \frac{m}{M(Al)} - 2.x$ من جدول تقدم التفاعل لدينا:

 $m_tig(Alig) = m - 2.x.M(Al)\cdots(1)$ نجد: ig(M(Alig)ig) نجد، العبارة السابقة في

 $n_t(H_2) = 3.x = \frac{V_{H_2}}{V_{MA}} \rightarrow x = \frac{V_{H_2}}{3.V_{MA}} \cdots (2)$ أيضا من جدول تقدم التفاعل لدينا:

 $m_t(Al) = m - rac{2.M(Al).V_{H_2}}{3.V_M}$ بتعویض العبارة (2) في (1)، نجد: $\left[Al^{3+}\right]_f$ و $V_f(H_2)$ و .4

 $V_f(H_2)$ حجم الغاز المنطلق **

$$n_f\left(H_2\right) = 3.x_{\max} = \frac{V_f\left(H_2\right)}{V_M} \rightarrow V_f\left(H_2\right) = 3.x_{\max}.V_M = 0.13L$$
: لدينا سابقا

 $: Al^{3+} \int_{\mathcal{L}} dl dl = \int_{\mathcal{L}} dl$

$$\left[Al^{3+}\right]_f = rac{2.x_{ ext{max}}}{V} = 0.06 mol / L$$
 :من العبارات السابقة

التمرين الثالث:

1. كتابة معادلة التفاعل الحادث:

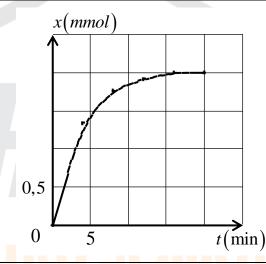
$$Zn = Zn^{2+} + 2e^{-}$$
 $I_2 + 2e^{-} = 2I^{-}$
 $Zn(s) + I_2(aq) = Zn^{2+}(aq) + 2I^{-}(aq)$

2. توضيح سبب تزايد الناقلية: بسبب ظهور الشوارد وتزايد تركيزها مع مرور الزمن.

3. جدول تقدم التفاعل:

عادلة	الم	Zn -	+ I ₂ =	2I ⁻ -	+ Zn ²⁺
الحالة	التقدم	n(Zn)	$n(I_2)$	n(I ⁻)	$n(Zn^{2+})$
ابتدائية	0	$n_1 = \frac{m_0}{M}$	$n_2 = C_0.V$	0	0
انتقالية	x	$n_1 - x$	$n_2 - x$	2x	x
نهائية	x_{max}	$n_1 - x_{\max}$	$n_2 - x_{\text{max}}$	$2x_{\text{max}}$	x_{max}

$\cdot x$ بدلالة التقدم ميارة الناقلية النوعية σ_t بدلالة التقدم 4.


$$\sigma_t = \lambda_{Zn^{2+}}.\left[Zn^{2+}\right]_t + \lambda_{I^-}.\left[I^-\right]_t \cdots (1)$$
 بتطبیق قانون کولروش: $\left[Zn^{2+}\right]_t = \frac{x}{V}$ بن جدول تقدم التفاعل لدینا: $\left[Zn^{2+}\right]_t = \frac{x}{V}$ بن جدول تقدم التفاعل لدینا: $\left[Zn^{2+}\right]_t = \frac{x}{V}$

بتعويض عبارة التركيز المولي للشوارد في العلاقة (1)، نجد:

$$\sigma_t = \left(\frac{\lambda_{Zn^{2+}} + 2\lambda_{I^{-}}}{V}\right).x = \left(\frac{(10,6 + 2 \times 7,7) \times 10^{-3}}{100 \times 10^{-6}}\right).x = 260.x$$

x = f(t) يكمال الجدول ورسم المنحنى .5

$t(\min)$	0	4	8	12	16	20
x(mmol)	0	1,34	1,77	1,92	2,00	2,00

6. أ- استنتاج المتفاعل المحد:

$$x_f = 2 \times 10^{-3} mol$$
 :من البيان نجد أن

ومن جدول تقدم التفاعل:

$$n_f(I_2) = C.V - x_{\text{max}} = 8.5 \times 10^{-2} \times 0.1 - 2 \times 10^{-3} = 6.5 \times 10^{-3} \text{ mol}$$

الأستاذ: بوزيان زكرياء

الشعب: ع ت - تر - ريا

تابع التصحيح النموذجي للوثيقة 0

بما أن التفاعل تام و $0 \neq 0$ ، إذن Zn هو المتفاعل المحد.

ب- حساب قيمة m₀ :

بما أن Zn هو المتفاعل المحد، واعتمادا على جدول تقدم التفاعل..

$$n_f(Zn) = \frac{m_0}{M} - x_{\text{max}} = 0 \rightarrow m_0 = x_{\text{max}}.M = 2 \times 10^{-3} \times 65, 4 = 0.13 g$$

